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Introduction

Abstract: The increasingly demanding design requirements of the next-generation particle accelerators such as the Next Linear
Collider (NLC), have placed heavy emphasis on the accuracy and reliability of RF software in order that accelerator
components can be modeled and analyzed with greater confidence.  Presently popular codes are inefficient in handling complex
geometric shapes, or are limited in their ability to solve large-scale problems.  The Numerical Modeling Group (NMG) at
SLAC has an ongoing effort to develop advanced numerical tools that specifically address these issues though the use of
unstructured grids and multi processing capability.  This poster presents Omega3P, a parallel distributed-memory finite-element
code for solving electromagnetics in the frequency domain for large complex three-dimensional geometries.  The problem is
challenging because the distributed mesh operations are communication intensive, and the parallel eigensolver is
computationally expensive.  Omega3P has been successful in solving geometries consisting of millions of mesh points on the
Cray T3E.

 

Omega3P - A Parallel Eigensolver Omega3P - Software Components

DDS Modeling

PARALLEL COMPUTING  motivated by increasing need to
model LARGE, COMPLEX RF cavities ACCURATELY for
Next-Generation Accelerators , such as the Damped, Detuned
Structure (DDS) for the Next Linear Collider (NLC).

•  Individual Cell Design - requires frequency accuracy to within
0.01 % because cell to cell dimensions vary on the same order.
• Whole Structure Analysis - simulates all 206 cells to obtain a
global solution of the fields.

Both types of modeling are beyond desktop computing resources.
SLAC is developing modeling tools that utilize multi-processors.

Based on Omega3, a finite element (linear & quadratic elements)
eigensolver with mesh refinement capabilities.

Key Components for Parallelization

•  Mesh Distribution - domain decomposition of the geometry
mesh for balanced load on each processor.

•  Matrix Assembly - finite element formulation and generation of
the Mass and Stiffness for the generalized eigenvalue problem:

MxKx λ=
•  Eigensovler - linear algebra operations to support the Jacobi-
Davidson method.

 DistMesh - a library for operating on distributed unstructured
meshes.  Operations include parallel file I/O, partitioning,
distribution, global numbering, and refinement.  DistMesh
makes use of ParMETIS (from U of Minnesota) for partitioning.

Omega3P - application module layered on DistMesh and
EigenSolver and contains the finite element formulation and
post processing.  It uses MeshTV (from LLNL) for
visualization.

EigenSolver - code for solving the generalized eigenvalue
problem using a Hybrid algorithms.  It uses Aztec (from Sandia
National Lab)  for solving sparse linear systems in parallel.
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DDS Cell - Domain Decomposition Post Processing with MeshTV

Work in Progress

Hybrid Scheme in Eigensolver

An optimized combination of three powerful methods.

• Spectrum transformation and band pass polynomial filtering,

• Inexact Krylov subspace projection,

• Modified Jacobi-Davidson local refinement.

•  Adaptive mesh refinement

•  Block version of the Hybrid Jacobi-Davidson eigensolver

•  Port to other parallel platforms such as:

•  Parallel mesh generation

Performance

Mesh (with 462687 Elements) 
of one octant of 1.5 DDS Cells.

The same mesh partitioned 
into 16 (roughly equal) pieces

Above:  Electric Fields
Above Right:  Wall Loss
Right:  Magnetic Fields

•  SGI Cray Origin 
•  Sun Enterprise 10000
•  PC Cluster

462687 Elements,  536193 Degrees of Freedom

This results in solver accuracy and convergence as well as
parallel scalability far superior than other algorithms.

Eigensolver Convergence Rate

An Inexact Krylov subspace projection algorithm is used for six
steps, followed by two steps of the Jacobi-Davison Method.

• Whole structure simulation  (~100 Million Mesh Elements)


